Uncluttering Case Clusters: Use of Rapid Whole Genome Sequencing to Exclude Transmission Events

Meredith Filly, RN, MPH1,2, Dafroes Susuki, MSN, CIC1, Virginia M. Pierce, MD2,3, Mohammad R. A. Salah, PhD4, Mirela H. Huntley, PhD4, Ian C. Herriott5, Tim Farrell, MS6, David C. Hooper, MD7,8, and Erica S. Shenoy, MD, PhD9,10,11

1Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA
2Department of Medicine, Harvard Medical School/Department of Pathology, Massachusetts General Hospital, Boston, MA
3Department of Nutrition, Harvard Medical School, Boston, MA
4Infectious Disease Unit, Massachusetts General Hospital, Boston, MA
5Department of Laboratory Medicine, Massachusetts General Hospital, Boston, MA
6Department of Medicine, Massachusetts General Hospital, Boston, MA
7Department of Pathology, Harvard Medical School, Boston, MA
8Department of Imaging, Massachusetts General Hospital, Boston, MA

1Corresponding author

BACKGROUND

- Newly identified multi-drug resistant organisms (MDRO) isolated from hospitalized patients with shared epidemiological characteristics can either represent transmission events or independent, unrelated acquisitions, or pseudo-outbreaks.
- Whole genome sequencing (WGS) can improve the efficiency of investigations triggered by MDRO cases with apparent epidemiological linkages by early exclusion of clonality.
- We report an implementation of WGS applied to the investigation of a cluster of methicillin-resistant Staphylococcus aureus (MRSA) [Investigation #1] in our Neonatal Intensive Care Unit (NICU) and a cluster of carbapenem-resistant Enterobacteriaceae (CRE) in our Respiratory Acute Care Unit (RACU) [Investigation #2].
- For each respective cluster, these inpatient nosocomial infections were initially considered to represent possible nosocomial transmission based on time and location of identification.

OBJECTIVE/DESIGN

- To investigate whether transmission events occurred between patients.
- WGS was applied to determine clonality.
- Investigations were initiated as part of routine infection control practices.
- The two investigations were conducted as retrospective case studies.

METHODS

- Investigation #1 study participants included five NICU patients with nosocomial MRSA isolates recovered between June and August 2020.
- Investigation #2 involved two RACU patients with nosocomial CRE infections in October 2020.
- Routine unit surveillance activities and characterization using standard epidemiologic criteria identified the isolates as nosocomial to their respective unit.
- The isolates were then submitted for epiXact, a rapid WGS and clonal transmission analysis service offered by Day Zero Diagnostics. The epiXact pipeline uses Illumina high depth whole genome sequencing and a reference mapping approach to quantify single nucleotide polymorphism (SNP) differences between isolates to determine genomic relatedness.

RESULTS: Investigation #1 MRSA

- The MRSA cluster included five recrudescent either clinical or surveillance isolates.
- All MRSA isolates were identified over a period of 60 days. (Figure 1)
- WGS identified one of the five isolates as methicillin-susceptible S. aureus due to the absence of the mecA or mecC resistance gene, despite growth on chromogenic MRSA screening agar. Follow up re-phenotyping confirmed WGS results.
- WGS revealed each of the five isolates as belonging to a distinct multilocus sequence type (MLST) with thousands of SNP differences between samples. (Figure 2)
- WGS results suggested that a nosocomial transmission linking these infections was highly unlikely.
- WGS returned results within thirty-six hours of sample receipt.

RESULTS: Investigation #2 CRE

- The CRE cluster included two patients with Klebsiella pneumoniae isolated from clinical cultures within five days of each other in the same clinical unit. (Figure 3)
- The two isolates had identical antimicrobial susceptibility profiles.
- WGS of the two isolates revealed that they belonged to different MLSTs and had tens of thousands of differing SNPs (Figure 4)
- WGS results suggested that a nosocomial transmission linking these infections was highly unlikely.
- WGS results returned within thirty-six hours of sample receipt.

CONCLUSIONS

- Suspected transmission events can be resource intensive to investigate and manage.
- The application of rapid WGS allowed for early discontinuation of investigations and conservation of resources.